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Galilean invariance and stabilized methods for compressible flows
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SUMMARY

In a recent work (Comput. Methods Appl. Mech. Eng. 2007; 196(4-6):966-978), it was observed that lack
of Galilean invariance led to catastrophic instabilities when stabilized methods were used in Lagrangian
shock hydrodynamics computations. By means of an arbitrary Lagrangian—Eulerian (ALE) formulation,
Galilean invariant SUPG operators were consistently derived in (Comput. Methods Appl. Mech. Eng. 2007,
196(4-6):1108-1132), and their Lagrangian and Eulerian limits were compared to the most commonly
used stabilized formulations. In the particular case of Eulerian meshes, it was shown that most of the
SUPG operators designed to date for compressible flow computations are not invariant. However, due to
the significant overhead of algebraic manipulations, the use in (Comput. Methods Appl. Mech. Eng. 2007,
196(4-6):1108-1132) of the referential form of the ALE equations made the presentation of the main ideas
quite involved. The present paper addresses this particular issue, since the invariance analysis is presented
with the aid of the intuitive current configuration reference frame, more familiar to computational fluid
dynamicists. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The concept of Galilean invariance is a particularization of the more general objectivity prin-
ciple, which states that certain properties of mechanical systems must remain invariant under
coordinate transformations. In a Galilean transformation, a constant velocity shift is applied to
the origin of the spatial coordinates. In general, the Galilean invariance principle is satisfied
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Figure 1. Results from the computations in [16]. Mesh distortion plot: The colour scheme represents the
pressure. Above: SUPG formulation violating Galilean invariance. Below: SUPG abiding the Galilean
invariance principle. A classical quadrilateral Saltzmann mesh is used in an implosion computation. The
initial velocity is of unit magnitude and directed horizontally from right to left, except the left boundary
which is held fixed. The initial density is unity and the initial specific internal energy is 10~!. A shock
forms at the left boundary and advances to the right. Note the mesh coasting phenomenon on the top
right corner of the upper domain, absent in the SUPG formulation satisfying Galilean invariance, below.

by the equations governing the motion of continua. In numerical computations, it is advis-
able that the discrete counterpart of the continuum equations maintain such property. This is
typically the case for Bubnov— and Petrov—Galerkin finite element methods, which enforce
orthogonality between the equations of motion (namely, the Galerkin residual) and the test
function space. In this case, the Galilean principle translates into the requirement that—under
Galilean transformations—the residual remains orthogonal to the Bubnov— and Petrov—Galerkin
test spaces. Because the shift by a constant velocity factors out of all the integrals in the vari-
ational statement, it is straightforward to prove that if the equations of the continuum are in-
variant, so are the discrete equations generated by a Bubnov— or Petrov—Galerkin method (see
Section 5).

SUPG and variational multiscale stabilized methods [1-8] are Petrov—Galerkin methods in
which the local structure of the partial differential equations is used to perturb the Bubnov—
Galerkin test space. In this sense, stabilized methods are a more general class of Petrov—Galerkin
methods. Classical Petrov—Galerkin methods require the test space to be chosen a priori: The test
function basis does not change with the parameters in the equations to be simulated, such as local
Péclet number, local Reynolds number, etc. SUPG methods, instead, are locally/physically adapted
Petrov—Galerkin methods, in which a local, parameter-dependent perturbation of the test function
space is introduced to improve the overall stability properties of the underlying Bubnov—Galerkin
formulation.

Hence, invariance of the perturbed test space is crucial to avoid the paradox of having the
stability properties of the method depending on the observer. As was shown in [9], while Galilean
invariance is respected by virtually all stabilized methods for incompressible flows [1, 10—15],
this is not the case for the large majority of stabilized compressible flow computations on
Eulerian (fixed) meshes. As a result, instabilities were generated (see, e.g. Figure 1) when
commonly used stabilization procedures were applied to compressible Lagrangian hydrodynamics
computations [16].
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The present article complements the work in [9] aimed to analyse and obviate this
problem, by presenting the discussion in the current configuration rather than the referential
configuration. The current configuration frame is in fact more intuitive, and prevents algebraic
details to obscure the key points of the analysis. With respect to standard approaches, also the
present formulation delivers a conspicuous reduction in the computational cost of the stabilization
operator.

The rest of the material is organized as follows: A very general discussion of the issue of
Galilean invariance in the context of arbitrary Lagrangian—Eulerian (ALE) equations and its
Eulerian and Lagrangian limits is presented in Section 2. The ALE description of the kine-
matics of motion is developed in Section 3. A stabilized space-time variational formulation of
the ALE compressible Euler equations is developed in Section 4. Section 5 presents an anal-
ysis of the invariance properties of the residuals and their effect on the approximation to the
subgrid-scale solution. In Section 6, a Galilean consistency analysis shows that standard SUPG
formulations for compressible flows yield a non-invariant test function space. A new, invariant ap-
proach is also developed, and its advantages are analysed in detail. Conclusions are summarized in
Section 7.

2. GALILEAN TRANSFORMATIONS

A Galilean transformation can be expressed by the affine mapping

G:RT xR x R — RT x R"™ x R (1)

[t xI v T 7 kT v1T )

and consists of a shift in the spatial coordinate by VY¢, namely,

=t 3)
X =x— VSt (4)
§y=v-VC© (5)

Here ng represents the number of space dimensions. Galilean transformations are commonly
used to verify the consistency of physical and computational models. A well-designed, consistent
model must be Galilean invariant, or, more precisely, its functional form .# has to transform as

MOV X L) S HF.RT ) (6)

A finite element method is generally developed over a geometrical model, by means of the
computational grid or mesh, a discrete subdivision of the physical space. The mesh may be fixed
(Eulerian), may follow the material motion (Lagrangian), or may have an arbitrary motion (ALE).
In the last case, it is straightforward to observe that the field ¢, the difference of the material velocity
v and the mesh velocity V, is invariant under Galilean transformations (see Figure 2). This simple
observation clearly implies that, for an ALE formulation, an invariant SUPG perturbation to the
Bubnov—Galerkin test function can only depend on thermodynamic variables and their gradients,
the velocity ¢, derivatives (in space or time) of the material velocity, and gradients of the position
vector.
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Figure 2. Sketch of a Galilean transformation for a generic ALE mesh. Left: A material domain, and the cor-
responding mesh, are moving with velocity v and v, respectively. Left: After a Galilean transformation is

applied, the material and the mesh are moving with velocities V=v — VO and ¥=¥ — VO, respec-

tively. The relative velocity of the material with respect to the mesh is an invariant: ¢=v — V=
v—Vi 94+ Vi=v-v¥=c

Remarks

(i) For a Lagrangian mesh, ¢ =0, and the SUPG term can only be a function of the thermo-
dynamic state, the material properties of the system, velocity derivatives (again, in space
or time), and gradients of the position vector.

(i) After a Galilean change of coordinates is performed, an Eulerian mesh transforms into a
mesh moving with uniform velocity —V©.

(iii) Developing SUPG operators for Eulerian meshes is somewhat problematic, since it is not
possible to discern from the equations whether the meaning of ‘v’ is v — v=
v — 0 =c, a relative velocity, or simply v, the absolute material velocity. A more consistent
approach is to start from the ALE formulation and then take the limit for a fixed (Eulerian)
mesh.

3. ARBITRARY LAGRANGIAN-EULERIAN KINEMATICS

In what follows, the notation used in [17-19] is adopted, with minor differences. A point of
departure in the discussion of the arbitrary Lagrangian—Eulerian approach is to define the material
(or Lagrangian), referential, and Eulerian reference frames. Let (g, Q, and Q be open sets in R"4
(see Figure 3). The deformation @ is the transformation from the materlal to the Eulerian reference
frame

¢ :Qy— Q=0 Q) @)
Xi>x=9X,1) ¥XeQy >0 8)

Here, X is the material coordinate (which usually corresponds to the point vector in the initial
configuration of the body) and x is the point vector in the Eulerian frame. €y is the domain
occupied by the body in the material reference frame. ¢ maps Qg to Q, the domain occupied by
the body in the current configuration (Eulerian frame). It is also useful to define the deformation
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Figure 3. Sketch of the maps @, @, and \y for the generalized ALE framework.

gradient and the Jacobian determinant:

0: 0x;
F=Vxp= a;, ~ X, ®
J = det(F) (10)
The referential map @, from the referential frame to the Eulerian frame, is defined as
Q- Q=0 (11)
v x=0(, 1) VyeQ, 10 (12)

where 7y is the point vector in the referential frame. Q, the domain occupied by the body in the
referential frame, is mapped to Q by @. In addition, the mesh deformation gradient and the mesh
Jacobian determinant are defined as

. b, Oxi
F=v,p="0i-2 (13)
J = det(F) (14)

The referential frame of reference lies on a mesh which is not fixed in space (Eulerian) nor
attached to the material (Lagrangian), but moves in time with an arbitrary motion. The transfor-
mation from the material to the referential frame will also be needed, namely

W Qo — Q=Y(Qy) (15)
X 1=UX,1) ¥XeQp >0 (16)
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:757-778
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The definition of the referential deformation gradient reads

V= )

Displacements are defined as
u=0X,7) —oX,0)=xX,r) - X (18)
U=00. 1) — o 0)=x(L. 1) — % (19)

with the practical assumption, % (X, t = 0) = X. The referential displacement 1 is the displacement
undergone by the mesh. Analogously, material and mesh velocities can be defined:

vo o oy 20)
ot |x  Otlx
y
g0 _ 21)
ot |y ot |y

Using the chain rule, it is possible to derive an important expression for the Lagrangian time
derivative of a scalar-valued function f:

(X, 1)

f(xa t): ot

+ VS

of
ot "

X

=a—f +w-V,f (22)
ot X

W=\iI(X, t) =1y is the particle referential velocity, that is the velocity of a material point seen
from the referential frame. It is easy to verify that

; ¢ .
V:(P(Xv )= 6—(;) =v+ Fw (23)
X

+ Vyo(y. t

) (X, 1)
X 0

which yields,
c=v—v=Fw (24)

A

or, in index notation, ¢; = v; — 9; = F;jw;. The convective velocity ¢ is the velocity of the material
relative to the mesh. Using (24), it is possible to cast (22) in a more intuitive way, as

o, o Of 1, Of
SO, = —| +Vyf-F )= —| +c¢c-Vxf (25)
ot |y ot X

Remarks

(i) In the Lagrangian limit, ¥ = X, v=v, and F= F, Vt, so that w=1 =X=0and ¢=0.
(ii) In the Eulerian limit, ¥y =x, v=0,and F =1, V¢, so that w=y=x=v and c=Iw=1v.
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4. THE ALE EQUATIONS OF COMPRESSIBLE FLOWS

As an alternative to the derivations in [9], a quasi-Eulerian ALE space—time formulation will be
presented. The terminology ‘quasi-Eulerian’ is due to the fact that the equations will be expressed
in terms of the current configuration, with the exception of the time derivatives. For this purpose,
the generalized Leibniz transport theorem becomes very useful.

4.1. Leibniz transport theorem

The Leibniz transport theorem expresses the time rate of the integral of a scalar f over a control
volume Q whose boundaries move with an arbitrary velocity v:

d NI RV of
— o= | J'=|(J dQ:/ L
dt Q:q,(fz)f /Q ot X< f) Q Ot

A proof is detailed in Appendix A.

do + / f¥-ndl (26)
X I'=0Q

4.2. Quasi-Eulerian, integral form of the ALE equations

Let us first apply the balance laws to a control volume Q whose boundaries are fixed (an Eulerian
control volume, with v =0):

0
0=/ o dQ+/pv~ndF 7
[e) ot X r
opv

0:/— dQ+/(pV®V—c)ndr—/png (28)

Q 0 |y r Q

O0pE

O=/ ’f dQ+/(pEV—0Tv+q)-ndF—/p(v~g+s)dQ (29)

Q Of | r Q

Here E is the total energy, the sum of the internal energy e and the kinetic energy v - v/2, g the
body force, and s the heat source. All previous quantities are defined per unit mass. In addition, p
is the density, ¢ is the stress tensor, and q is the heat flux. Using (26), it is possible to recast the
integrals of the time derivatives in terms of a control volume that coincides with Q at time ¢, but
moves with an arbitrary velocity v. Recalling c=v — ¥, it is easily derived:

w0
0:/1—1ﬂ dQ+/pc-ndr (30)
Q ot r
w0

oz/ j-1 e dQ+/(pV®c—c)ndF—fpng 31)

QO ot r Q

%
~; 0(JpE

ozfrlM dQ+/(pEc—ch+q)~ndF—/p(v-g—i—s)dQ 32)

Q ot r Q
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Applying the divergence theorem in its vector and tensor forms yields

7101, (JUY)) + 0, Gi(Y) + Z(Y) =0 (33)

where the following definitions apply:

p 0 pci
pY1 —pP8i1 pvici — a1
U=|pn|, Z= —pg> , G = pvaci — 02 (34)
pv3 —pg3 pv3ci — 03;
| pE | | —pvigi — ps_ | pEci —vjoji +qi |

withi=1,2,3.

4.3. Mie—Griineisen constitutive laws

It is assumed that the materials under consideration do not possess shear strength, so that the
Cauchy stress tensor ¢ reduces to an isotropic tensor, dependent only on the thermodynamic
pressure

oij = — poij (35)

with 6;;, the Kronecker tensor. Mie—Griineisen materials satisfy an equation of state of the form
p = f1(p; py, er) + f2(p; p;, er)e, where p, and e; are fixed reference thermodynamic states. More
succinctly,

p=filp) + fa(p)e (36)

Remarks

(1) If fi=0and f> = (y—1)p, the equation of state for an ideal gas, p = (y— 1) pe, is recovered.
(i1) Note that

0 T 0
01 poii
G =¢U+GE, GH= —02; = Po2i 37
—03; posi
Lgi —Vj0ji | L gi +vip ]

where G{.“ is the Lagrangian limit of the Euler flux Jacobians, as ¢ — 0.

Thanks to the Mie—Griineisen constitutive equations, a quasi-linear form of (33) can be derived,
namely,

A0l Y + A (Y)Y + C(Y)Y =0 (38)

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:757-778
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The matrices Ag, A;, and C (to be given in Section 6) depend on the choice of the solution
vector Y.

4.4. A space—time variational formulation

In order to lay the foundations for the subsequent discussion, a space—time variational formulation
is presented. The analysis of Galilean invariance is not strictly dependent on the variational
formulation adopted, and, for example, similar conclusions hold for alternative space—time or
semi-discrete formulations. Given a partition 0 = fo<t|<fp< - - - <ty_1 <ty = T of the time interval
1=]0,T], let I, =1¢,, ty+1], so that 10, T] = UQJ;(I) I,,. The space-time domain Q —Qx 1 can
be divided into time slabs

0n=Qx1I, (39)

with ‘lateral’ boundary P,=Tx1I, (f =0Q is the boundary of Q, see Figure 4). We will only
make use of discretizations prismatic in time, with respect to the referential frame. Namely, the

material domain Q is divided into subdomains Q° (elements in space, a partition of the initial

configuration). Thus Q= UZil Q¢, and, consequently, a typical space—time element is given by

the referential prism (i.e. tensor product domain)
0, =0 x1, (40)

It is also assumed that the space-time boundary is partitioned as P,=P3U }3’;, PsnN ﬁZ =0
(i.e. P, is divided into a Dirichlet boundary P5 and a Neumann boundary PZ). As shown in

t Qn = ¢(Qn)

Lot

/T

to

xi=mt=0 N p

Figure 4. General finite element discretization in space—time.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:757-778
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Figure 4, the previous definitions can be pushed forward to the current configuration, for which
the following expressions hold:

00 € Qx I =p(0n) (41)
Py =(Py) (42)

Ty =@ 1) (43)
Q= GO, 1) (44)

08 Q% x I, = p(0%) (45)
P = (Py) (46)

It should be obvious that, due to the structure of the mapping @, Q, x I, #Q x I,,, and Q;, x I,
#Q° x I,. The test and trial function spaces can therefore be defined as

I = (V" Ve (0™, Voo € (21(09))™, V! = Gype(t) on PF) (47)
= (W' W e (COQ)™, W e € (21(Q°) x Po(1,))™, W' =0 on P} (48)

where Gy () is the vector of Dirichlet boundary conditions, 2 is the set of polynomials up to
degree k, and m =ng + 2, ng =1, 2, or 3. The trial function space %lh is given by the piecewise-
linear, continuous functions on Q = (i)(Q), while the test function space Vnh is given by functions
that are continuous piecewise-linear in space and discontinuous, piecewise-constant in time. The
variational statement reads as follows.

Find Y" € 5’;lh, such that, YW" ¢ ”V,;h,

0= f W) - UY' (X, 1441)) — Wi - U(Y" (%, 1,)) dQ
Q(’nJrl) Q(t")

— | Wh.Gi(YHdo+ | Wr.zZ(YMdo
On On

+/ W' . G; (Y"n; dP+/ W" . H;n; dP
P P}

+SUPG(W", Y") + DC(W", Y") (49)

where 7n; is the ith component of the normal to the space—time boundary, and H; is the Neumann
flux across the boundary in the ith direction. The SUPG operator SUPG(W”, Y") will be defined
subsequently. Away from discontinuities, where the flow field is smooth, DC(Wh, Yh) vanishes,
and for this reason, it will be omitted in the following discussion. The proposed formulation is
second-order-in-time and, following derivations analogous to [20], it can be easily proven to embed
global conservation of mass, momentum, and total energy.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:757-778
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4.5. SUPG Stabilization
The SUPG stabilization operator can be abstractly defined as

(nen

SUPG(W", Y") = — Zl . (LigWr) - TRes(Y") dQ (50)
=1 Jo;
where
Res = Ao |y +A;dy; + C=L 5D
Lsu = Ao0:ly + Aidy; (52)
Lén = —Ag0rly — AT 0y, (53)
t=1(At, he,Ag, A;,C,...) 54)

At is the time increment, and &, is the eth element mesh scale. In the discussion that follows,
a precise definition of t is not needed. Instead, its functional dependence on the parameters and
various terms in the formulation are sufficient to fully understand the issues under investigation.

Remarks

(i) The expression for Res(Y") is obtained by applying the quasi-linear form (38) of the
Galerkin residual (33). Hence higher-order inconsistency in the Galielan invariance prop-
erties of the residual are to be expected. Numerical evidence [16] shows that, usually, such
inconsistencies are not critical.

(i1) Most importantly, a consistently stabilized method must ensure strict Galilean invariance
for the perturbation to the Galerkin test function (L§HW;,) - 1. If this is not the case, the
stability properties of the overall formulation depend on the observer, clearly a paradox.
The discussion that follows is aimed to investigate in detail this particular issue.

5. GALILEAN INVARIANCE AND RESIDUAL STRUCTURE

Before undertaking an exhaustive discussion on the construction of the SUPG operator, it is
important to understand how the numerical Galerkin residuals transform. It will be shown that
for some choices of the solution variables, it is possible to maintain invariance properties if the
numerical residuals are in advective form, independently of the integration quadrature adopted.
This result does not hold for any solution vector, as was clearly derived in [9], for the case of
conservation variables. Therefore, a key point to be made is the following: not all forms of the
numerical, non-vanishing residuals transform correctly.

Using the following definitions of the advective form of the mass, momentum, and internal
energy residuals,

0 0 ov;
Res”(p; ¢, v, 1) = Tp +cj—p+p—j (55)
ot % 0x j 0x j
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:757-778
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143 ov; 0
Res}(p. pre.v.0) = p -| +pej om0 — pgi (56)
o Iy Oxj  0x
e ae ae 6UJ
Res“(p,e, p;e, v, 1) =p —| +pcj——+ —p—ps (57)
ot X 6)(]' éxj

it easy to prove that (33), valid for a smooth flow, can be expressed as
0=Res’(p; ¢, v, 1) (58)
0= Resfv(p, p;¢c, Vv, 1)
=v;Res”(p; ¢, v, 1) +Res! (p, p; ¢, v, 1) (59)
0= ResE(p, e,p;c,v,t)
= (e + %) Res”(p; ¢, v, 1)

+ viRes] (p, p; ¢, v, 1) +Res®(p, e, p;¢, v, 1) (60)

Recalling that x(X, r =0) = ¢(X, t =0) =X, it easy to verify that a Galilean transformation yields,

r t t f
¢| = c or c| = ¢ (61)
v v— VO v v+ V©
Hence,
Res”(p; v, ¢, 1) S, Res”(p; V, ¢, 1) (62)
v G v S arf
Res; (p, p; v, ¢, 1) —> Res; (p, p; V, ¢, 1) (63)
Res’(p, e, p;v,¢, 1) S, Res’(p, e, p; v, €, 1) (64)
Res”" (p, pi V. ¢, 1) —> Res!" (p, p: ¥, & 1) + VORes’ (p; ¥, &, 1) (65)
E G E o s
Res (p9 e, p;v,c, t) — Res (p7 e, p;v,c, t)
; vOySs
+ VRes" (p, p1 ¥, &, 1) + —£-Res" (p; ¥, €. 1) (66)

Hence, the equations would transform appropriately, if the terms multiplied by the transformation
velocity VO annihilated exactly. In other words, if an exact multiscale decomposition of the solution
were available, the resulting equations would satisfy the invariance principle.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:757-778
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If, however, as already mentioned in [9, 16], the subgrid-scale problem is solved only approxi-
mately, the situation is different and the numerical residuals are not necessarily invariant.

No matter the numerical quadrature used, the numerical approximations to the ‘advective’
residuals Res™?, Res¥, and Res:¢ would transform correctly, if, for example, the set of solution
variables is given by [p, vT, p]T, [o, vl e]T, or [e, VT, p]T. More generally, if v is a variable
in the solution vector, and the remaining two entries are given by functions of the thermodynamic
quantities, the resulting advective form of the residuals would transform correctly. This is due to
the fact that the advective form of the residual for the previous set of solution variables contains the
velocity v only in differentiated form. Instead, Res””¥ and Res™E would not transform correctly,
because VO multiplies some of the non-vanishing residual terms.

It is also important to realize, however, that residuals are usually higher-order corrections: In the
computations performed in [20, 16], virtually no difference in the results was observed between
SUPG operators with and without invariant residuals. In fact, instabilities were experienced only
for a non-invariant SUPG test function perturbation, indicating that this case is, by far, the more
critical.

6. QUASI-LINEAR FORMS AND INVARIANCE

The quasi-linear differential form of the ALE equations has a central role in the design of SUPG
operators, which make use of a fairly arbitrary combination of its Euler flux Jacobians to define
a perturbation to the Bubnov—Galerkin test function space. Hence, a practical requirement to be
enforced is that every Euler flux Jacobian must be invariant, or one cannot expect the perturbed
test space to be independent of the observer.

6.1. Pressure primitive variables

The case of pressure primitive variables (Y =[e v! p]T) is now analysed. The heat flux q is assumed
absent. Pressure primitive variables are of great interest in the aerospace community, since they
allow to span the compressible and incompressible limits of the Euler equations. For the sake of
completeness, Appendix B presents the case of the density—pressure variables (Y =[p vI p]T),
and density-internal energy variables (Y =[p v! e]T), the latter being traditionally used in shock
hydrodynamics computations. It will be shown how to successfully address the issue of lack
of Galilean invariance affecting classical SUPG formulations, by using the advective form of the
residuals when constructing the Euler flux Jacobians needed in the definition of the SUPG operator.
In the literature of formulations for the pressure primitive variables [21-23], the temperature T is
typically used in place of the internal energy e. However, the familiar expressions for the Euler
Jacobians can be recovered noticing that e =c, T, where c, is the specific heat for an isocoric
thermodynamic transformation. Recalling that 0, |xj =J Vx-v (fora proof, see (A3) in Appendix
A), the following manipulations will prove useful:

0=J7""21,(JU) + 0,,Gi + Z
zat|xU+UVx-€'+6xi(ciU+GiL)+Z
za'|XU+UVX'G+UVX'C+6‘[5X,»U+8XI.G%+Z
=0/1yU+¢i0, U+ UVy-v+0,,GF+Z 67
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6.1.1. The ‘standard’, non-invariant approach. Starting from (67), it easy to derive

U =0,

P
pv1
pv2
pv3

pE

1
V1
v2

U3

E

0
6.1}1
)

OeV3

_vka.vk + a.e_

+ dop

1
V1
v2
v3

E

(68)

where either do = 0|y Or 0o =0y;, and dep=p ,dee + p ,0up, With p ,=0p/0e|p, and p ,=

0p/0ple. The quasi-linear vector form (38) would then incorporate the following definitions:

(NG) _
AN =

Pe 00 0 p,
vip, p 0 0 wvp,
AE)NG) = V2P, 0 p 0 wp,
LY 0 pvip,
| Ep.+p pvi pv2 pvz Ep, |
- 0 0 0 0 07
—glfp 0 0 0 0
CND=| —gf, O 0 0 0
-ga3fp 0 0 0 o0
| —sf, —pg1 —pg2 —pgs O
where fp =ple, p)/e, and, for i =1,2,3,
[ cip e poi P02 pO3i cipp
CiVIp . pci + pv1dy; | pv10y; pU103; civip,, + 01
Civ2p pv201; pci + pv2da;i | pv203; civ2p p + 02
Civ3p, pU301; P30 pci + pv3dsi | civzp , + 03
ci(p+ Ep,) | pcivi+ pcivat+ pciv3+ Ecip , +vi
(PE + p)o1i | (PE + p)oai | (pE + p)dsi

Remarks

(69)

(70)

(71)

(i) This choice leads to Jacobians of the Euler fluxes which are nor invariant if considered
separately. By inspection, it is easy to realize that there is a large number of terms which

Copyright © 2007 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids 2007; 54:757-778
DOI: 10.1002/fid



GALILEAN INVARIANCE AND STABILIZED METHODS FOR COMPRESSIBLE FLOWS 771

contain components of the velocity vector v. Therefore, a single Euler flux Jacobian or
an arbitrary combination of Euler flux Jacobians are not necessarily invariant. This is
precisely the situation for the perturbation to the test function —(L’S‘HW}’) = (Ag Oy |x Wi

Al.Taxl. W")t, which lacks invariance properties, with potentially very negative consequences
on the overall stability of the formulation.

(i) Although in principle it is possible to develop a tensor t producing an invariant perturbation
of the test function, in practice, the current structure of the Jacobians makes this task
extremely difficult.

(iii) By taking the Eulerian limit (v — 0 and ¢ — v), one can easily obtain the form of the
Euler flux Jacobians commonly implemented in stabilized finite element methods (see, e.g.
[21]), which are therefore non-invariant.

(iv) As a justification for the invariance inconsistencies found in the literature of stabilized
methods, it is worth noting that it is virtually impossible to discern whether a velocity
term transforms correctly, if only the Eulerian form of the equations is available, for which
¢ =v. Hence, the reverse approach is needed, in which first a consistent ALE formulation
is developed, and then the Eulerian equations are derived as a limit.

6.1.2. Galilean invariant approach. As already noticed, the momentum equation (59) contains its
advective form (56), and, in addition, the product of the velocity components v; times the mass
conservation equation (58). Analogously, the total energy equation (60) contains the sum of the
internal energy equation (57) and the kinetic energy equation, that is, the scalar product of the
momentum equation (59) and the velocity v. Therefore, if the advective forms (55)-(57) are used,
the following alternative form of the Euler Jacobians can be derived:

_P,e 00 O P,p_ 0 0 0 0 07
0 p 00 0 —ga1fy 00 0 0
APP=10 0 p 0 0|, CO=|_gf 00 0 0 (72)
0 00 p 0 —g3f, 00 0 0
 p 00 0 0 | L —sf, 0 0 0 0]

and, fori =1, 2, 3,

[cip, | pO1i | pba | posi | cip,]

0 pCi 0 0 01
A= | o 0 pci 0 i (73)
0 0 0 pPCi 53,‘

pci | po | pou | p o 0
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Remarks

(i) Each of the generalized advective matrices developed respects the principle of Galilean
invariance, since they are function of ¢, p, p, € ,, and e ,, all invariant quantities.

(i1) One can think about the proposed approach as being ‘minimalist’. In fact, it produces the
minimal number of entries in the Jacobians while still retaining the generalized advective
structure of the quasi-linear form, now reduced to the mass conservation equation, the
advective form of the momentum equation, and the advective form of the internal energy
equation.

(iii) By comparison with the standard Jacobians (70)—(71), the Galilean invariant Jacobians
(72)—(73) require much fewer terms to be computed.

(iv) As documented in Appendix B, similar conclusions can be drawn in the case density—
pressure, and density-internal energy variables.

(v) The proposed approach works because this specific choice of variables yields a point-wise
invariant expression of the advective form of the compressible Euler equations. For other
sets of variables, such as conservation or entropy variables, the advective form does not
help removing Galilean inconsistencies, as explained in detail in [9]. An effective way to
construct invariant SUPG operators for conservation or entropy variables is still to be found.

7. CONCLUDING REMARKS

The present article complements previous work in [9], by extending the analysis to formulations
written in terms of the current configuration reference frame, more commonly used in the com-
putational fluid dynamics community. Once more, it was shown that most of the stabilization
operators designed to date for compressible flow applications on Eulerian meshes do not satisfy
the principle of Galilean invariance. As documented in [16] for the Lagrangian limit, the price
to be paid for such flaw can be significant, since a non-invariant Petrov—Galerkin test space di-
rectly affects the stability properties of the underlying stabilized method. Due to its significantly
reduced computational cost, the new approach has potential in the context of complex-geometry,
multi-physics applications.

APPENDIX A: PROOF OF THE LEIBNIZ TRANSPORT THEOREM

Theorem 1
Let Q be an arbitrary control volume Q, with boundary I'. Let v be the velocity with which T’
deforms, and f a scalar. Then, the following formula holds:

d 0
=  fdQ= / _f
dr Ja— ¢ Q Ot

dQ41/ f9-ndl (A1)
X =0Q

Proof
Due to the map ¢, Q= (i)(f)) deforms with velocity v. Defining Q=0Q¢=0) (ie. oy, r=0)=D),
one has that Q does not depend on time, and

d d s
— Af@:—[fMQ
dt Q=¢) dr Q
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ofT . . oJ| A
:/ ({J) dQ:/a—f J—|—f—J dQ
g Ot gatx ot
x

0 . R R
=/—f J+ fIVye-vdQ
Q %

A

—e.vxf+vx-(fe))fdfz
x

773

(A2)

where Vy and V- are the current configuration (Eulerian) gradient and divergence, and dQ = JdQ.

In particular, the following identity has been used:

. oF
Z =Da(DT =
0 # (/) ot
v V4
. [ oF| .
=Ju| —| F!

=JVy ¥ (A3)
Dy () is the differentiation operator with respect to the entries of F, that is,
(Dpij () = a(;) (A4)
0F;;
Recalling (24), and using (25) with v arbitrary and v =0, it is easily derived:
i—{z(z—{x—k(v—f')-fo:%—{X%-v-fo (AS)
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or,
of | . of
—| —Vv-Vyf=— (A6)
ot |, ¥ o |y
Using the Gauss divergence theorem, (A2) becomes
d R R ja)
—/f]dQ:/g dQ+/VX~(f€')dQ
dr Jo o Ot |4 Q
=/ 9f dQ—i—/ fv-ndll (A7)
Q Of |y r=o0Q
which concludes the proof. O

APPENDIX B: QUASI-LINEAR FORMS AND INVARIANCE: ADDITIONAL SETS
OF SOLUTION VARIABLES

B.1. Density—pressure variables

In the case of pressure variables (Y =[p v p]T), the following identity will become very useful:

Oe de op p ap ap
ot |, o _e'P(ar LT3 J)”’p(a Ty
op op Ov;
o (P Lo oP Y, BI
e*”(ar , C’ax,-> “rP o B

with e , =0e/0p|, and e , = de/0p|p.

B.1.1. The ‘standard’, non-invariant approach. Using the traditional Fréchet differentiation of
(58)-(60), the quasi-linear vector form reads

Ao(Y)0: [, Y +Ai (Y)Y +C(Y)Y =0 (B2)
with
1 0 0 0 0]
vy P 0 0 0
AN =1vw 0 p 0 o0 (B3)
v3 O 0 p 0
| E pur pv2 pvz pe) |
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0 0 0 0 0
—g1 0 0 0 0
CNO=|_g 0 0 0 0
—-g3 0 0 0 0
L —s  —pg1 —pg2 —pg3 0
and, fori =1, 2, 3,
¢ poL; pO2; pO3; 0
civy | pci + pvidy; pv162; pv163; O1i
ANG) _ civa | pvady; pci + pvada; PV253; Sai
! civs | pv3di p362i pci + pv3ds 03
GE | pcivi+ pciva+ pciv3+ pcie p + v;
L (WE+p—ple)di | (0E+p—ple)on | (0E+p—pey)ds

775

(B4)

(B5)

B.1.2. Galilean invariant approach. The previous approach is not the only way to derive a quasi-
linear form of the Euler equations. Casting the Euler equations in advective form, the following
set of invariant flux Jacobians is readily obtained:

(Gal) _
AP =

and, fori =1, 2, 3,

A(Gal) _

B.2. Density-internal energy variables

1 000 0 0 000 0
0 p 00 0 —g1 0 0 0 0
00 p 0 0 CGh—1|_¢ 00 0 0
0 0 p 0 —g3 0 0 0 0
(0 0 0 0 pep | | —s 0.0 0 0
ci p 01 p 02 p 03 0
pc; 0 0 01
0 pci 0 02
0 0 pci 03i
(p—pep)du | (p—pep)dn | (p—pe,)dsi | peie,

(B6)

(B7)

It is of interest, especially for the community developing shock hydrodynamics algorithms
(hydrocodes, in short), the set of variables Y =[p vl e]T.
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B.2.1. The ‘standard’, non-invariant approach.

1 0 0 0 0
w o p 0 0 O
AM=1w 0 p 0 0 (BS)
vs 0 0 p 0
| E pvr pv2 puvz p |
0 0 0 0 0]
—g1 0 0 0 0
CNO—1 ¢ 0 0 0 0 (B9)
—g3 0 0 0 0
| —s  —pg1 —pg2 —pg3 0]
and, fori =1,2, 3,
[ci p 01 p 02 p 03 0 ]
civi + p.poii | pci + pvidii | pv1d2i p103 P.e01i
civa + ppd2i | pv2dy; pci + pv2dai | pv2ds; P.e02i
AI(NG) _ l 1 1 1 l 1 e l (BlO)
civ3 + p.p03i | pv3ody; pU302; pci + pv3od3i | p.eodsi
GE+ppvi | pcivi+ pciva+ pcivz+ pci + pevi
L (PE + p)o1i | (pE 4 p)oasi | (pE + p)ds; i
B.2.2. Galilean invariant approach.
1 0 0 0 O 0 0 0 0 O]
0 p 00O —g1 0 0 0 0
APY=10 0 p 0 0|, COY=|_g 00 0 0 (B11)
0 0 0 —-g3 0 0 0 O
(00 0 0 p] | —s 0 0 0 0
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and, fori =1, 2, 3,

Ci p o1 | po2 | p O3 0
P.p 01 | pci 0 0 P.e Ot
A =1pyou| 0 | pa | 0 | peon (B12)
Ppdsi| 0 0 | pci | pedsi
| 0 pol | poy | pos | pci |
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